Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We report on a search for sub-GeV dark matter (DM) particles interacting with electrons using the DAMIC-M prototype detector at the Modane Underground Laboratory. The data feature a significantly lower detector single rate (factor 50) compared to our previous search, while also accumulating a 10 times larger exposure of . DM interactions in the skipper charge-coupled devices (CCDs) are searched for as groups of two or three adjacent pixels with a total charge between 2 and . We find 144 candidates of and 1 candidate of , where 141.5 and 0.071, respectively, are expected from background. With no evidence of a DM signal, we place stringent constraints on DM particles with masses between 1 and interacting with electrons through an ultralight or heavy mediator. For large ranges of DM masses below , we exclude theoretically motivated benchmark scenarios where hidden-sector particles are produced as a major component of DM in the Universe through the freeze-in or freeze-out mechanisms.more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            Abstract The DArk Matter In CCDs at Modane (DAMIC-M) experiment is designed to search for light dark matter (mχ< 10 GeV/c2) at the Laboratoire Souterrain de Modane (LSM) in France. DAMIC-M will use skipper charge-coupled devices (CCDs) as a kg-scale active detector target. Its single-electron resolution will enable eV-scale energy thresholds and thus world-leading sensitivity to a range of hidden sector dark matter candidates. A DAMIC-M prototype, the Low Background Chamber (LBC), has been taking data at LSM since 2022. The LBC provides a low-background environment, which has been used to characterize skipper CCDs, study dark current, and measure radiopurity of materials planned for DAMIC-M. It also allows testing of various subsystems like readout electronics, data acquisition software, and slow control. This paper describes the technical design and performance of the LBC.more » « lessFree, publicly-accessible full text available November 1, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
